Proof of the Quotient-Remainder Theorem

Theorem 4.4.1: (The Quotient-Remainder Theorem)

For any integer n and any positive integer d, there exist unique integers

q and r such that $n = d \cdot q + r$ and $0 \le r < d$.

Proof: Let n be any integer and let d be any positive integer.

[We first prove the **existence** of such integers q and r.]

Let set S be defined as follows:

$$S = \{ x \in Z \mid x \ge 0 \text{ and } x = n - d \cdot k \text{ for some integer } k \}$$

[Later, we will see that the least element of S is the remainder r and the quotient q is the integer k that comes with it in the definition of set S.]

[We verify that set S satisfies the conditions of the Well-Ordering Principle.]

[We show that set S contains at least one integer element, that is, that S is non-empty.]

There are two possibilities for the number n: $n \ge 0$ or n < 0.

Case 1: $(n \ge 0)$. Suppose $n \ge 0$.

Let k = 0. Then, $n - d \cdot k = n \ge 0$, so $n = n - d \cdot k$ is in set S.

∴ Set S is non-empty in Case 1.

Case 2: (n < 0). Suppose n < 0.

Then, (-n) > 0 and $d-1 \ge 0$, since $d \ge 1$.

$$\therefore (-n) \cdot (d-1) \ge 0. \qquad \text{Let } k = n.$$

Then,
$$n-d\cdot k = n-d\cdot n = -d\cdot n + n = (-n)\cdot (d-1) \ge 0$$
.

 \therefore n – d•n is in set S and set S is non-empty in Case 2.

... Therefore, set S is non-empty, in general .

[We show that every integer in S is greater than or equal to some fixed integer.]

By definition of set S, every element in S is greater than or equal to 0..

Therefore, set S satisfies the conditions of the Well-Ordering Principle.

Therefore, by the Well-Ordering Principle, set S contains a least element m. [Ultimately, m is r.]

Since $m \in S$, there is some specific integer ℓ such that $m = n - d \cdot \ell$.

$$\therefore$$
 n = d· ℓ + m.

[Later, we will find that $\ell = q$ and m = r, and then $n = d \cdot q + r$, by substitution.]

[To complete the proof of existence, we have left to show that $0 \le r < d$. That is, we need to show that $0 \le m < d \cdot 1$ Since m is an element of S, $0 \le m$. [We will prove that m < d using proof-by-contradiction .] Suppose, by way of contradiction, that $m \ge d$. \therefore m - d \geq 0. [We show that (m-d) is in set S.] [Recall that, by definition of ℓ , $m = n - d \cdot \ell$.] Now, $m-d = (n-d \cdot \ell) - d$ $= n - d \cdot (\ell + 1)$ \therefore (m-d) = n - d·k, where k = ℓ + 1. $(m-d) \ge 0$ and $(m-d) = n-d \cdot k$, for some integer k. \therefore (m – d) is an element of set S. But, (m-d) < m, which contradicts the fact that m is the least element of set S. ∴ m < d, by proof-by-contradiction. [Therefore, we have shown the following:] \therefore n = d· ℓ + m and 0 \leq m < d. Let $q = \ell$ and r = m. Then, q and r are integers such that $n = d \cdot q + r$ and $0 \le r < d$. [Thus, existence of integers q and r has been established.] [It remains only to show that these integers q and r are unique, that is, if q₁ and r₁ are any two integers such that $n = d \cdot q_1 + r_1$ and $0 \le r_1 < d$,

then $q_1 = q$ and $r_1 = r$.

Already, we know, for the integers q and r as defined above, that

$$n = d \cdot q + r$$
 and $0 \le r < d$.

Let q₁ and r₁ be any two integers such that

$$n = d \cdot q_1 + r_1$$
 and $0 \le r_1 < d$.

Since $n = d \cdot q + r$ also,

$$d \cdot q + r = d \cdot q_1 + r_1$$
, by substitution.

$$\therefore r_1 - r = d \cdot q - d \cdot q_1 = d \cdot (q - q_1)$$
 [***]

We first assume that $r_1 \ge r$.

[Case 1]

Since $0 \leqslant r_1 - r \leqslant r_1$ and $r_1 < d$, $0 \leqslant r_1 - r < d$.

$$\therefore$$
 0 \leq d·(q-q₁) $<$ d, by substitution. [Next, divide all expressions by d.]

$$\therefore 0 \leq (q-q_1) < 1.$$

Since $q-q_1$ is an integer such that $0 \le (q-q_1) < 1$, $q-q_1 = 0$.

$$\therefore$$
 q = q₁, under the assumption that r₁ \geq r. [q = q₁ in Case 1]

If $r \ge r_1$, then a similar argument shows that $q = q_1$. [$q = q_1$ in Case 2]

Thus, $q = q_1$, in general, and so, $(q - q_1) = 0$.

By [***] above,
$$r_1 - r = d \cdot (q - q_1)$$
.

$$\therefore r_1 - r = d \cdot (q - q_1) = d \cdot 0 = 0 \text{ by } [***] \text{ above.}$$

$$\therefore r_1 = r$$
.

$$\therefore$$
 q₁ = q and r₁ = r. Thus q and r are unique.

QED